maxent_toolbox

Maximum Entropy toolbox for MATLAB

View the Project on GitHub orimaoz/maxent_toolbox

List of functions in the Maximum Entropy toolbox

Note: all the functions reside in the maxent namespace, and can be imported into the general namespace by calling:

import maxent.*;

trainModel

Trains a maximum entropy model on an empirical dataset.

getLogProbability

Returns the log probabilities of samples according to a maximum entropy model.

getMarginals

Returns the marginals of a maximum entropy model.

getWeightedMarginals

Returns the empirical marginals of a dataset reweighted by a probability distribution.

wangLandau

Estimates the partition function and entropy of a model using the Wang-Landau algorithm.

getEmpiricalModel

Returns an empirical distribution corresponding to a set of samples.

getEntropy

Returns the entropy of a maximum entropy model.

dkl

Returns Kullback-Leibler divergence between two probability distributions.

djs

Returns Jensen-Shannon divergence between two probability distributions.

getExplicitDistribution

Returns an explicit representation of a probabilistic model as a vector of probabilities.

getNumFactors

Returns the number of factors (parameters) in a maximum entropy model.

getFactors

Returns the factors (parameters) in a maximum entropy model.

setFactors

Sets the factors (parameters) in a maximum entropy model.